Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38617325

RESUMO

Molecular details of genome packaging are little understood for the majority of viruses. In enteroviruses (EVs), cleavage of the structural protein VP0 into VP4 and VP2 is initiated by the incorporation of RNA into the assembling virion and is essential for infectivity. We have applied a combination of bioinformatic, molecular and structural approaches to generate the first high-resolution structure of an intermediate in the assembly pathway, termed a provirion, which contains RNA and intact VP0. We have demonstrated an essential role of VP0 E096 in VP0 cleavage independent of RNA encapsidation and generated a new model of capsid maturation, supported by bioinformatic analysis. This provides a molecular basis for RNA-dependence, where RNA induces conformational changes required for VP0 maturation, but that RNA packaging itself is not sufficient to induce maturation. These data have implications for understanding production of infectious virions and potential relevance for future vaccine and antiviral drug design.

2.
Nat Microbiol ; 5(11): 1361-1373, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32690955

RESUMO

Eukaryotic cells, when exposed to environmental or internal stress, activate the integrated stress response (ISR) to restore homeostasis and promote cell survival. Specific stress stimuli prompt dedicated stress kinases to phosphorylate eukaryotic initiation factor 2 (eIF2). Phosphorylated eIF2 (p-eIF2) in turn sequesters the eIF2-specific guanine exchange factor eIF2B to block eIF2 recycling, thereby halting translation initiation and reducing global protein synthesis. To circumvent stress-induced translational shutdown, viruses encode ISR antagonists. Those identified so far prevent or reverse eIF2 phosphorylation. We now describe two viral proteins-one from a coronavirus and the other from a picornavirus-that have independently acquired the ability to counteract the ISR at its very core by acting as a competitive inhibitor of p-eIF2-eIF2B interaction. This allows continued formation of the eIF2-GTP-Met-tRNAi ternary complex and unabated global translation at high p-eIF2 levels that would otherwise cause translational arrest. We conclude that eIF2 and p-eIF2 differ in their interaction with eIF2B to such effect that p-eIF2-eIF2B association can be selectively inhibited.


Assuntos
Fator de Iniciação 2B em Eucariotos/antagonistas & inibidores , Fator de Iniciação 2 em Eucariotos/antagonistas & inibidores , Estresse Fisiológico/fisiologia , Proteínas Virais/metabolismo , Animais , Sítios de Ligação , Chlorocebus aethiops , Células Eucarióticas/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Humanos , Fosforilação , Picornaviridae/metabolismo , Ligação Proteica , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...